发布日期:2018-05-21 12:30:21 浏览次数:6505
气相沉积技术是利用气相中发生的物理、化学过程,在工件表面形成功能性或装饰性的金属、非金属或化合物涂层。气相沉积技术按照成膜机理,可分为化学气相沉积、物理气相沉积和等离子体气相沉积。
目前制备钨涂层可采用物理或化学气相沉积方法,或者将气相沉积方法结合其他制备技术,提高钨涂层的性能。
化学气相淀积[CVD(Chemical Vapor Deposition)],指把含有构成薄膜元素的气态反应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。在超大规模集成电路中很多薄膜都是采用CVD方法制备。
CVD特点:淀积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。
化学气相沉积(CVD)
将工件置于反应室中,抽真空并加热***900~1100℃。如要涂覆TiC层,则将钛以挥发性氯化物(如TiCl4)与气体碳氢化合物(如CH4)一起通入反应室内,这时就会在工表面发生化学反应生成TiC,并沉积在工件表面形成6~8μm厚的覆盖层。工件经气相沉积镀覆后,再进行淬火,回火处理,表面硬度可达到2000~4000HV
物理气相沉积(PVD)
物理气相沉积是通过蒸发,电离或溅射等过程,产生金属粒子并与反应气体反应形成化合物沉积在工件表面。物理气象沉积方法有真空镀,真空溅射和离子镀三种,目前应用较广的是离子镀。
离子镀是借助于惰性气体辉光放电,使镀料(如金属钛)气化蒸发离子化,离子经电场加速,以较高能量轰击工件表面,此时如通入CO2,N2等反应气体,便可在工件表面获得TiC,TiN覆盖层,硬度高达2000HV。离子镀的重要特点是沉积温度只有500℃左右,且覆盖层附着力强,适用于高速钢工具,热锻模等。
化学气相沉积详解
化学气相沉积是一种化工技术,该技术主要是利用含有薄膜元素的一种或几种气相化合物或单质、在衬底表面上进行化学反应生成薄膜的方法。化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相淀积已成为无机合成化学的一个新领域。
现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺入某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。
化学气相沉积技术是应用气态物质在固体上阐述化学反应并产生固态沉积物的一种工艺,它大致包含三步:
(1)形成挥发性物质 ;
(2)把上述物质转移***沉积区域 ;
(3)在固体上产生化学反应并产生固态物质 。
***基本的化学气相沉积反应包括热分解反应、化学合成反应以及化学传输反应等集中
1)在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。
2)可以在常压或者真空条件下(负压“进行沉积、通常真空沉积膜层质量较好)。
3)采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行。
4)涂层的化学成分可以随气相组成的改变而变化,从而获得梯度沉积物或者得到混合镀层。
5)可以控制涂层的密度和涂层纯度。
6)绕镀件好。可在复杂形状的基体上以及颗粒材料上镀膜。适合涂覆各种复杂形状的工件。由于它的绕镀性能好,所以可涂覆带有槽、沟、孔,甚***是盲孔的工件。
7)沉积层通常具有柱状晶体结构,不耐弯曲,但可通过各种技术对化学反应进行气相扰动,以改善其结构。
8)可以通过各种反应形成多种金属、合金、陶瓷和化合物涂层。
化学气相沉积装置***主要的元件就是反应器。按照反应器结构上的差别,我们可以把化学气相沉积技术分成开管/封管气流法两种类型:
1 封管法
这种反应方式是将一定量的反应物质和集体放置于反应器的两边,将反应器中抽成真空, 再向其中注入部分输运气体,然后再次密封, 再控制反应器两端的温度使其有一定差别,它的优点是:①能有效够避免外部污染;②无须持续抽气就能使是内部保持真空。它的缺点是:①材料产生速度慢;②管中的压力不容易掌握。
2 开管法
这种制备方法的特点是反应气体混合物能够随时补充。废气也可以及时排出反应装置。以加热方法为区分,开管气流法应分为热壁和冷壁两种。前者的加热会让整个沉积室壁都会因此变热,所以管壁上同样会发生沉积。 后者只有机体自身会被加热,也就没有上述缺点。 冷壁式加热一般会使用感应加热、通电加热以及红外加热等等。
1化学气相沉积法生产晶体、晶体薄膜
化学气相沉积法不但可以对晶体或者晶体薄膜性能的改善有所帮助,而且也可以生产出很多别的手段无法制备出的一些晶体。化学气相沉积法***常见的使用方式是在某个晶体衬底上生成新的外延单晶层,***开始它是用于制备硅的,后来又制备出了外延化合物半导体层。它在金属单晶薄膜的制备上也比较常见(比如制备 W、Mo、Pt、Ir 等)以及个别的化合物单晶薄膜(例如铁酸镍薄膜、钇铁石榴石薄膜、钴铁氧体薄膜等)。
2生产晶须
晶须属于一种以为发育的单晶体,它在符合材料范畴中有着很大的作用,能够用于生产一些新型复合材料。 化学气相沉积法在生产晶须时使用的是金属卤化物的氢还原性质。化学气相沉积法不但能制备出各类金属晶须,同时也能生产出化合物晶须,比如氧化铝、金刚砂、碳化钛晶须等等。
3化学气相沉积技术生产多晶/非晶材料膜
化学气相沉积法在半导体工业中有着比较广泛的应用。比如作为缘介质隔离层的多晶硅沉积层。在当代,微型电子学元器件中越来越多的使用新型非晶态材料,这种材料包括磷硅玻璃、硼硅玻璃、SiO2以及 Si3N4等等。此外,也有一些在未来有可能发展成开关以及存储记忆材料,例如氧化铜-五氧化二磷、氧化铜-五氧化二钒-五氧化二磷以及五氧化二钒-五氧化二磷等都可以使用化学气相沉积法进行生产。
1、化学气相沉积法生产几种贵金属薄膜
贵金属薄膜因其有着较好的抗氧化能力、高导电率、强催化活性以及极其稳定引起了研究者的兴趣。和生成贵金属薄膜的其他方式相比,化学气相沉积法有更多技术优势,所以大多数制备贵金属薄膜都会采用这种方式。沉积贵金属薄膜用的沉积员物质种类比较广泛,不过大多是贵金属元素的卤化物和有机化合物,比如COCl2、氯化碳酰铂、氯化碳酰铱、DCPD化合物等等。
在沉积时往装置中通入氧气是为了消除掉原料因热分解产生的碳,并制备出更有金属光泽的贵金属薄膜,如若不然则***后得到的就是铱碳簇膜,也就是纳米等级被晶碳层所包裹的铱颗粒。沉积在YSZ 上面的铱碳簇膜有着优秀的电性能和催化活性。在比较低的温度下,铱碳簇膜的界面电导率能达到纯铱或者纯铂的百倍以上。贵金属和炭组成的簇膜是一种输送多孔催化活性强的簇膜,在电极材料上的使用在未来将很有潜力。
2、化学气相沉积法生产贵金属铱高温涂层
从20世纪80年代开始,NASA 开始尝试使用金属有机化合物化学气相沉积法制取出使用铼基铱作为涂层的复合喷管,并获得了成功,这时化学气相沉积法在生产贵金属涂层领域才有了一定程度上的突破。
NASA 使用了C15H21IrO6作为制取铱涂层的材料,并利用 C15H21IrO6的热分解反应进行沉积。铱的沉积速度很快,***高可以达到3~20μm/h。 沉积厚度也达到了50μm,C15H21IrO6的制取效率高达 70%以上。
3、钯的化学气相沉积
Pd 及其合金对氢气有着极强的吸附作用以及特别的选择渗透性能,是一种存储或者净化氢气的理想材料。现在对于Pd 的使用大多是将钯合金或是钯镀层生产氢净化设备 。也有些学者使用化学气相沉积法将钯制成薄膜或薄层。具体做法是使用分解温度极低的金属有机化合物当做制备钯的材料,具体包括:烯丙基[β-酮亚胺]Pd(Ⅱ)、Pd(η3-C3H5) (η5-C5H5)以及 Pd(η3-C3H5)(CF3COCHCOCF3)之类的材料,使用这种方式能够制取出纯度很高的钯薄膜。
化学气相沉积技术是一种重要的材料制备方式,在对贵金属薄膜和涂层上有着重要的作用,当前我国在航空航天领域仍处于发展期,而化学气相沉积技术的使用还有很大的探索空间,需要我们投入更多的精力进行研究。
物理气相沉积详解
物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。 物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。
物理气相沉积技术早在20世纪初已有些应用,但30年迅速发展,成为一门***广阔应用前景的新技术,并向着环保型、清洁型趋势发展。20世纪90年代初***今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。
真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子束、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用***早的技术。
溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。 电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚***“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。
离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。
物理气相沉积技术基本原理可分三个工艺步骤:
(1)镀料的气化:即使镀料蒸发,升华或被溅射,也就是通过镀料的气化源。
(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。
(3)镀料原子、分子或离子在基体上沉积。
物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。
随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。
(一)真空蒸镀原理
(1) 真空蒸镀是在真空条件下,将镀料加热并蒸发,使大量的原子、分子气化并离开液体镀料或离开固体镀料表面(升华)。
(2)气态的原子、分子在真空中经过很少的碰撞迁移到基体。
(3)镀料原子、分子沉积在基体表面形成薄膜。
(二)蒸发源
将镀料加热到蒸发温度并使之气化,这种加热装置称为蒸发源。***常用的蒸发源是电阻蒸发源和电子束蒸发源,特殊用途的蒸发源有高频感应加热、电弧加热、辐射加热、激光加热蒸发源等。
(三)真空蒸镀工艺实例 以塑料金属化为例,真空蒸镀工艺包括:镀前处理、镀膜及后处理。
真空蒸镀的基本工艺过程如下:
(1)镀前处理,包括清洗镀件和预处理。具体清洗方法有清洗剂清洗、化学溶剂清洗、超声波清洗和离子轰击清洗等。具体预处理有除静电,涂底漆等。
(2)装炉,包括真空室清理及镀件挂具的清洗,蒸发源安装、调试、镀件褂卡。
(3)抽真空,一般先粗抽***6.6Pa以上,更早打开扩散泵的前级维持真空泵,加热扩散泵,待预热足够后,打开高阀,用扩散泵抽***6×10-3Pa半底真空度。
(4)烘烤,将镀件烘烤加热到所需温度。
(5)离子轰击,真空度一般在10Pa~10-1Pa,离子轰击电压200V~1kV负高压,离击时间为5min~30min,
(6)预熔,调整电流使镀料预熔,除气1min~2min。
(7)蒸发沉积,根据要求调整蒸发电流,直到所需沉积时间结束。
(8)冷却,镀件在真空室内冷却到一定温度。
(9)出炉,.取件后,关闭真空室,抽真空***l × l0-1Pa,扩散泵冷却到允许温度,才可关闭维持泵和冷却水。
(10)后处理,涂面漆。
溅射镀膜是指在真空条件下,利用获得功能的粒子轰击靶材料表面,使靶材表面原子获得足够的能量而逃逸的过程称为溅射。被溅射的靶材沉积到基材表面,就称作溅射镀膜。 溅射镀膜中的入射离子,一般采用辉光放电获得,在l0-2Pa~10Pa范围,所以溅射出来的粒子在飞向基体过程中,易和真空室中的气体分子发生碰撞,使运动方向随机,沉积的膜易于均匀。发展起来的规模性磁控溅射镀膜,沉积速率较高,工艺重复性好,便于自动化,已适当于进行大型建筑装饰镀膜,及工业材料的功能性镀膜,及TGN-JR型用多弧或磁控溅射在卷材的泡沫塑料及纤维织物表面镀镍Ni及银Ag。
这里指的是PVD领域通常采用的冷阴极电弧蒸发,以固体镀料作为阴极,采用水冷、使冷阴极表面形成许多亮斑,即阴极弧斑。弧斑就是电弧在阴极附近的弧根。在极小空间的电流密度极高,弧斑尺寸极小,估计约为1μm~100μm,电流密度高达l05A/cm2~107A/cm2。每个弧斑存在极短时间,爆发性地蒸发离化阴极改正点处的镀料,蒸发离化后的金属离子,在阴极表面也会产生新的弧斑,许多弧斑不断产生和消失,所以又称多弧蒸发。 ***早设计的等离子体加速器型多弧蒸发离化源,是在阴极背后配置磁场,使蒸发后的离子获得霍尔(hall)加速效应,有利于离子增大能量轰击量体,采用这种电弧蒸发离化源镀膜,离化率较高,所以又称为电弧等离子体镀膜。 由于镀料的蒸发离化靠电弧,所以属于区别于第二节,第三节所述的蒸发手段。
离子镀技术***早在1963年由D.M.Mattox提出,1972年,Bunshah &Juntz推出活性反应蒸发离子镀(AREIP),沉积TiN,TiC等超硬膜,1972年Moley&Smith发展完善了空心热阴极离子镀,l973年又发展出射频离子镀(RFIP)。20世纪80年代,又发展出磁控溅射离子镀(MSIP)和多弧离子镀(MAIP)。
(一) 离子镀
离子镀的基本特点是采用某种方法(如电子束蒸发磁控溅射,或多弧蒸发离化等)使中性粒子电离成离子和电子,在基体上必须施加负偏压,从而使离子对基体产生轰击,适当降低负偏压后,使离子进而沉积于基体成膜。 离子镀的优点如下:①膜层和基体结合力强。②膜层均匀,致密。③在负偏压作用下绕镀性好。④无污染。⑤多种基体材料均适合于离子镀。
(二)反应性离子镀
如果采用电子束蒸发源蒸发,在坩埚上方加20V~100V的正偏压。在真空室中导入反应性气体。如N2、O2、C2H2、CH4等代替Ar,或混入Ar,电子束中的高能电子(几千***几万电子伏特),不仅使镀料熔化蒸发,而且能在熔化的镀料表面激励出二次电子,这些二次电子在上方正偏压作用下加速,与镀料蒸发中性粒子发生碰撞而电离成离子,在工件表面发生离化反应,从而获得氧化物(如TeO2:SiO2、Al2O3、ZnO、SnO2、Cr2O3、ZrO2、InO2等)。其特点是沉积率高,工艺温度低。
(三)多弧离子镀
多弧离子镀又称作电弧离子镀,由于在阴极上有多个弧斑持续呈现,故称作“多弧”。多弧离子镀的主要特点如下: (1)阴极电弧蒸发离化源可从固体阴极直接产生等离子体,而不产生熔池,所以可以任意方位布置,也可采用多个蒸发离化源。 (2)镀料的离化率高,一般达60%~90%,显著提高与基体的结合力改善膜层的性能。 (3)沉积速率高,改善镀膜的效率。 (4)设备结构简单,弧电源工作在低电压大电流工况,工作较为安全。
英文指"physical vapor deposition" 简称PVD.是镀膜行业常用的术语.
PVD(物理气相沉积)镀膜技术主要分为三类,真空蒸发镀膜、真空溅射镀和真空离子镀膜。对应于PVD技术的三个分类,相应的真空镀膜设备也就有真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机这三种。
近十多年来,真空离子镀膜技术的发展是***快的,它已经成为当今***先进的表面处理方式之一。我们通常所说的PVD镀膜 ,指的就是真空离子镀膜;通常所说的PVD镀膜机,指的也就是真空离子镀膜机。
物理气相沉积(PVD)
物理气相沉积是通过蒸发,电离或溅射等过程,产生金属粒子并与反应气体反应形成化合物沉积在工件表面。物理气象沉积方法有真空镀,真空溅射和离子镀三种,应用较广的是离子镀。
离子镀是借助于惰性气体辉光放电,使镀料(如金属钛)气化蒸发离子化,离子经电场加速,以较高能量轰击工件表面,此时如通入CO2,N2等反应气体,便可在工件表面获得TiC、TiN覆盖层,硬度高达2000HV。离子镀的重要特点是沉积温度只有500℃左右,且覆盖层附着力强,适用于高速钢工具,热锻模等。